Skip to main content

Departments

Department of Synthetic Biology and Immunology

Two main research directions in our group are synthetic biology and molecular immunology. Synthetic biology combines the engineering approach with biological systems, aiming to introduce new properties into biological or biomimetic systems with potential applications and aiming to understand the function of complex biological systems by constructing them from the bottom up. While the two directions developed independently we find that their combination along with  a diversity of experimental techniques is quite powerfull .

The main research topics within synthetic biology include
i) designed polypeptide nanostructures,
ii) engineering of mammalian cell signaling and information processing and
iii) gene and cell therapy technologies.

Research on protein nanostructures, funded by an ERC Advanced Grant MaCChines (2018-2023), is focused on coiled-coil-based protein assembly design, named coiled-coil protein origami (CCPO), which is our original platform to design modular proteins based on concatenated coiled-coil dimer-forming segments that self-assemble into a designed shape based on the mathematically defined path. Since the invention of this type of modular protein design, which is distinct from natural globular protein folds, we have advanced this technology by the additional tunable CC modules (Drobnak et al. JACS 2017), new CCPO folds (different tetrahedral topologies, rectangular pyramid and trigonal prism) that self-assemble in mammalian cells and in vivo (in mouse) without triggering any adverse physiological effects (Ljubetič et al., Nat.Biotech. 2017), multi-chain hierarchical assembly of a trigonal bipyramid and its regulation by proteolysis (Lapenta et al., Nat.Comm. 2021), design of the CCPO folding pathways that enables multiple use of the same module within the same chain (Aupič et al., Nat.Comm. 2021) and preparation, characterization, crystal structure determination of nanobodies binding to designed CC modules and their binding to diverse CCPO polyhedra (Majerle et al., PNAS 2021).

Coiled-coil modules have also been successfully implemented for the regulation of biological processes in mammalian cells, by introduction of fast signaling pathways based on the proteolysis and coiled-coils, which enables construction of Boolean logic gates in mammalian cells that respond to the chemical signal within few minutes, rather than hours as needed for transcriptional regulation (Fink et al., Nat.Chem.Biol. 2019), multiplexing cellular localization, potent transcriptional regulators and strong amplification of light- and chemical-regulation of transcription by coiled-coils in mammalian cells and concatenated coiled-coil segments (CCCtag) that enable tuning of the response and recruitment of different number of the desired protein domains (Lebar et al., Nat.Chem. Biol. 2020), facilitated polarized displacement of TALEs proteins from DNA, where we demonstrated displacement of a DNA-bound TALE protein by another TALE only in case when it binds to 5’ and demonstrated a new mechanism of fast transcriptional repression (Lebar et al., Nat.Chem.Biol. 2019) and  regulation of fast secretion or membrane translocation of proteins in mammalian cells by regulated cleavage of the endoplasmic reticulum retention signal and its application for fast secretion of insulin, anti-inflammatory cytokine and regulation of activation of CAR T cells  (Praznik et al., Nat.Comm. 2022).

In the direction of molecular immunology, we have been mainly focusing on innate immunity, including molecular mechanisms of Toll-like receptor (TLR) signaling, where we demonstrated that small DNA oligomers strongly augment TLR9 activation of a CpG oligonucleotide, similar as RNA degradation products shown before for TLR7 (Pohar et al., Nat. Comm. 2017), contributed to understanding of the mechanism of activation of NLRP3 inflammasome and the role of its LRR domain and showed that activation does not proceed via a nucleation event (Hafner-Bratkovič et al., Nat.Comm. 2018), mechanism of regulation of pyroptosis via gasdermin D that involves Ragulator that promotes gasdermin D oligomerization (Evavold et al., Cell 2021), the role of oxidative stress in activation of TLR4 via partial oxidation of phospholipids and synergistic activity between phospholipase A2 and 15-lipoxygenase that generates endogenous TLR4/MD2 agonist from extracellular vesicles (Ha et al., PNAS 2020),  mechanism of transfer of the signaling complex comprising mutate MyD88 in diffuse B-cell lymphoma, which is frequent in Waldenstrom’s macroglobulinemia (WM) and demonstrates intercellular transfer of proinflammatory signal that is able to engage the endogenous signaling pathway in target cells, which we demonstrated in a bone marrow of a muse model of WM (Manček-Keber et al., Blood 2018).

Achievements

Protein-protein interactions (PPIs) are key to biological functions and are used in applications ranging from drug…
Coiled-coil protein origami (CCPO) uses modular coiled-coil (CC) building blocks and topological principles to design…
Merljak et al., 2023, Nature Communicatins   Designed interactions between proteins are an excellent tool for the…
Rihtar et al., Nature Chem. Biol., 2022  Chemical control of the functioning of human cells plays an important role in…
Lainšček et al., Nature Communications, 2022  In the field of genome editing technology, we improved the genome…

News

We received funding to establish the Centre for the Technologies of Gene and Cell Therapy (CTGCT). The mission of the…
The Slovenian Science Foundation awarded the Prometheus of Science award for excellence in communication for the year…
Dr. Iva Hafner Bratkovič is the recipient of the Miroslav Zeia Award for outstanding achievements, awarded by the…
Dr. Mateja Manček Keber is the recipient of the Pregl Award for outstanding achievements in the field of chemistry and…
Project »LoopOfFun - Closed-LOOP control OF FUNgal Materials« is a HORIZON European Innovation Council (EIC) Pathfinder…
Accessibility(CTRL+F2)
color contrast
text size
highlighting content
zoom in